Kimberly Bagley
Professor
Department of Chemistry
Buffalo State College
1300 Elmwood Ave.
Buffalo, NY 14222

Phone: (716) 878-5933
e-mail: bagleyka@buffalostate.edu

On-Line Course Information

Professional Information/Research

Selected Publications

Other Activities

K. Bagley picture



Professional Information 

B.S., Bowling Green State University, 1979 
Ph.D.,
University of Illinois at Urbana-Champaign, 1987
NSF Postdoctoral Fellow, University of California at San Diego, 1987-1989
LANL Postdoctoral Director's Fellow, Los Alamos National Laboratory, 1989-1991

Research Interests:

Infrared Spectroscopic Studies of Metalloproteins.

     Research efforts in my laboratory center on using infrared spectroscopy to examine the roles that the cofactors and active site amino acids play in the function of metalloenzymes. We are currently using infrared spectroscopy to study the structure and function of two classes of metalloproteins: 

 1) The Hydrogenases catalyze the reversible oxidation of molecular hydrogen (H2).  Three forms of hydrogenases are known which differ in their active site structure.  

a) In the [NiFe] hydrogenases, the active site contains a Ni ion that is bridged to an  Fe(CN)2CO moiety by two conserved cysteine residues. 

b) The active site of the [FeFe] Hydrogenases (also known as Fe-only hydrogenases)  consists of a  2Fe subcluster in which two Fe(CO)(CN) moieties are bridged by a CO ligand and a dithiol (S-X-S) moeity of unknown composition.  The 2Fe subcluster is tethered to the the protein by a thiolate from conserved cystiene which bridges between the 2Fe subcluster and a nearby 4Fe-4S cluster.   

c) The active site of the  FeS cluster free hydrogenase  (5,10-methenyltetrahydromethanopterin hydrogenase or Hmd) contains a  Fe(CO)2 moiety at its active site.   

    Our current research efforts on the hydrogenase project include: 1)  Utilizing  infrared signatures in the 2100-1800 cm-1 spectral region that from the intrinsic metal coordinated carbon monoxide and cyanide ligands, which are unique to this class of enzymes. This approach provides a unique opportunity since the   frequencies of the IR bands associated with the CO and CN ligands at the active site of these enzymes are extremely sensitive to  the  redox and coordination environment of the metals at the active site;  2) Extension of our infrared studies into the mid-infrared spectral region (2000-700 cm-1); Mid-infrared difference spectroscopy allows us to examine the role conserved amino acids play in the activation of hydrogen by these enzymes.  Over the years we have collaborated with researchers from around the world on various aspects of this project (e.g. England, France, Germany, Japan, The Netherlands,  and the USA).  
 

2) The Carbon Monoxide Deydrogenase/ Acetyl-CoA synthase (CODH/ACS)  is a bifunctional enzyme that catalyzes the reversible reduction of carbon dioxide into carbon monoxide, and, the coupled synthesis of acetyl-CoA from the carbon monoxide produced by the CODH domain of the enzyme.  This reaction is an important component of 1-C metabolic processes in a number of microrganisms that are capable of growth on one carbon sources.  In collaboration with Dr. Stephen Ragsdale, Department of Biological Chemistry, University at Michigan,   we have used IR spectroscopy to study  CODH/ACS from Moorella thermoacetica after incubation under CO.  Our results show that  carbon monoxide binds in a terminal fashion to metal ions at the active sites of both CODH and ACS in this complex.     Additionally, our IR studies show that the CODH active site is capable of  oxidizing  CO  into CO2 at the CODH active site in the absence of an added electron acceptor. 
   
Infrared Spectroscopic Studies of  Metastable State Linkage Isomers:

     Transition metal complexes of the type ML5(NO). xH2O have a ground state stucture in which NO is coordinated to the metal via the nitrogen (M-NO).  Upon irradiation with UV-visible light  at low temperatures,  two species are formed which differ in how the NO is coordinated to the metal center.  One of these metastable states (termed MS I) has been shown to be  an oxygen bound  isonitrosyl (M-ON), while the other  (MS II) has been shown to be a side bound NO.   FTIR spectroscopy in parallel with x-ray photocrystallography, differential scanning calorimetry, and density functional calculations have been instrumental in the study of these systems.  In collaboration with Dr. Philip Coppens, Department of Chemistry, SUNY at Buffalo, and Dr. George Richter-Addo,  Department of Chemistry and Biochemistry, University of Oklahoma, we have shown that the formation of metastable state linkage isomers is seen not only in simple transition metal nitrosyls of the type described  above,  but also occurs in Ru and Fe porphyrin nitrosyls.  Additionally,  the formation of linkage isomers is not limited to NO complexes.   A side bound dinitrogen is formed upon irradiation of Os(NH3)5(N2)2+;  In Ru sulfur dioxide complexes  side bound and O-bound isomers of the sulfur dioxide have been detected,  and, in Fe(NO)(NO2) complexes double linkage isomers involving both NO and NO2 are found.  

Time Resolved Infrared Spectroscopy:

    A new FTIR spectrometer (Bruker IFS66v/s) and a pulsed II NdYAG laser (Continuum Surelite II)  suitable for collecting IR spectra as a function of time following an event triggered by a laser  have recently been installed at Buffalo State.  Funding for the project was provided by the National Science Foundation's MRI program, through a grant made to Dr. Philip Coppens (University at Buffalo) and me.    This system allows for collection of mid- IR spectra following a laser flash in the either rapid scan or step scan mode of the FTIR.   A 200 MHz digitization board coupled to a photovoltaic MCT detector in the FTIR allows for the collection of time resolved infared data in the step scan mode with a time resolution of  up to 10 ns.


Publications:

32. Characterization of a Cyanobacterial-like Uptake [NiFe]-Hydrogenase. EPR and FTIR Spectroscopic Studies of the Enzyme from Acidithiobacillus ferrooxidans ;  O. Schröder, W., B. Bleijlevens, T. de Jonge, Z. Chen, T. Li, J. Fischer, J. Förster, C. G. Friedrich, K. A.  Bagley, S. P. J. Albracht, and W. Lubitz, J. Bioinorganic Chem. 12(2); 212-233 (2007). [Epub 2006 -Nov. 3].

31. Experimental and Density Functional Theoretical Investigations of Linkage Isomerism in Six Coordinate {FeNO}6 Iron Porphyrins with Axial Nitrosyl and Nitro Ligands; I. V. Novozhilova, P. Coppens, J. Lee, G. B. Richter-Addo, and K. A. Bagley, J. Am. Chem. Soc. 128(6); 2093-2104 (2006).

30.  Photo-induced Oxygen Transfer and Double Linkage Isomerism in a cis (NO)(NO2) Transition Metal Complex by Photocrystallography, FT-IR Spectroscopy, and DFT Calculations; A. Y Kovalevsky, G. King, K. A. Bagley, and P. Coppens, Chem. Eur. J. 11; 1-12  (2005).

29.  Single and Double Linkage Isomerism in a Six-Coordinate Iron Porphyrin Containing Nitrosyl and Nitro Ligands; J.  Lee, A. Yu. Kovalevsky, I.  V. Novozhilova,  K. A. Bagley, P. Coppens, and G.  B. Richter-Addo; J. Am. Chem. Soc., (Communication) 126(23); 7180-7181(2004).

28. Infrared Studies of Carbon Monoxide  Binding to Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase from Moorella thermoacetica;  J. Chen,  S. Huang,  J.  Seravalli, H. Gutzman Jr., D. J. Swartz, S. A.  Ragsdale, and  K. A. Bagley; Biochemistry 42; 14822-14830 (2003).

27. Light-Induced Metastable Linkage Isomers of Ruthenium Sulfur Dioxide Complexes; A. Y Kovalevsky , K. A. Bagley , J. M. Cole,  &  P.  Coppens; Inorg. Chem. 42(1);  140-147 (2003).

26. The First Crystallographic Evidence for Light-Induced Metastable Linkage Isomers of Ruthenium Sulfur Dioxide Complexes;  A. Y. Kovalevsky,  K. A. Bagley, & P. Coppens; J. Am. Chem. Soc. 124(31); 9241-9248 (2002).

25. Infrared Studies of the CO Inhibited Form of the Fe-only Hydrogenase from Clostridium pasteurianum I:  Examination of Its Light Sensitivity at Cryogenic Temperatures;  Z. Chen, B. Lemon, S. Huang, Derrick Swartz; J. W. Peters, and K. A. Bagley;  Biochemistry 41(6),   2036-2043 (2002).

24. On the Photochemical Behavior of the [Ru(NO)(NH3)4 nicotinamide]3+ cation and the Relative Stability of Light-Induced Metastable Isonitrosyl Isomers of Ru Complexes; C. Kim., I.  Novozhilova, M. S. Goodman, K. A. Bagley, and P. Coppens,  Inorg. Chem. 39(25), 5791-5795 (2000).

23. First Observation of Photo-induced Nitrosyl Linkage Isomers of Iron Nitrosyl Porphyrins;   L. Cheng, I. Novozhilova,  C. Kim,  D. Fomitchev, K. A.  Bagley, P. Coppens,  and  G. B.  Richter-Addo,  J. Am.  Chem.  Soc. (Communication) 122(29), 7142-7143 (2000).

22. The First Crystallographic Evidence for Side-On Coordination of N2 to a Single Metal Center in a Photoinduced Metastable State;  D. V. Fomitchev,  K. A.  Bagley,  and P. Coppens; J.  Am. Chem. Soc. (Communication) 122(3),  532-533 (2000).

21. Photo-induced   Metastable  Linkage   Isomers   of   Ruthenium   Nitrosyl  Porphyrins; D. Fomitchev, P. Coppens,  T. Li, K. A. Bagley, L. Chen, and G. B. Richter-Addo;  Chem. Comm.  19,  2013-2014  (1999).

20. Evidence for Carbon-Monoxide and Cyanide as Intrinsic Ligands to Iron in the Active Site of [NiFe]-Hydrogenases:  NiFe(CN)2CO,  Biology's Way to Activate H2;  A. J. Pierik, W. Roseboom, R. P. Happe,  K. A. Bagley, and S. P. J. Albracht; J.  Biol. Chem. 274 (6), 3331-3337 (1999). 

19.  Biological Activation of Hydrogen;   R. P. Happe,  W.  Roseboom,  A. J.  Pierik,  S.  P.  J.  Albracht,  and K.  A.  Bagley;  Nature  385, 126 (1997).

18. Similarities in Architecture of the Active Sites of Ni- Hydrogenases and Fe- Hydrogenases as Detected by Means of Infrared Spectroscopy;  T. M. Van der Speck,  A. F. Arendsen, R. P. Happe, S.  Yun, K. A. Bagley,  D. J. Stufkens,  W. R. Hagen,  and   S. P. J. Albracht, Eur. J. Biochem. 237 (3),  629-634  (1996).

17. An Infrared-Detectable Group Senses Changes in Charge Density on the  Nickel Center  in Hydrogenase from Chromatium  vinosum; K. A. Bagley, E. C. Duin, W. Roseboom, S. P. J. Albracht, and W. H. Woodruff, Biochemistry 34(16), 5527-5535 (1995).

16. Infrared Studies on the Interaction of Carbon Monoxide With Divalent Nickel in  Hydrogenase From  Chromatium vinosum ;   K. A. Bagley,  C. Van Garderen, M. Chen,  E. C. Duin, S. P. J. Albracht, W. H. Woodruff,  Biochemistry 33(31), 9229-9236 (1994).

15. An Unknown Redox Component in Nickel Hydrogenases; S. P. J. Albracht, J. W. Van der Zwaan, M. Chen, M. H. Kolk, E. C. Duin, K. A. Bagley, and W. H. Woodruff, Biol. Chem. Hoppe-Seyler 374,  824 (1994).

14. Ultrafast and Not-So-Fast Dynamics of Cytochrome Oxidase: The Ligand Shuttle and Its Possible Functional Significance; W. H. Woodruff, R. B. Dyer, O. Einarsdóttir, K. A. Peterson, P. O.Stoutland, K. A. Bagley, G. Palmer, J. R. Schoonover, D. S. Kliger, R. A. Goldbeck, T. D. Dawes, J. -L. Martin, J .-C. Lambry, S. J. Atherton, and S. M. Hubig; Proceedings of SPIE 1432 (Biomolecular Spectroscopy II), 205-210, (1991).

13. The "Ligand Shuttle" Reactions of Cytochrome Oxidase: Spectroscopic Evidence, Dynamics, and Functional Significance; W. H. Woodruff, R. B. Dyer,  O. Einarsdóttir,  K. A. Peterson, P. O. Stoutland, K .A. Bagley, G. Palmer, J. R. Schoonover, D .S. Kliger, R .A. Goldbeck, T .D. Dawes, J. -L. Martin, J. -C. Lambry, S. J. Atherton, and S. M. Hubig; in Spectroscopy of Biological Molecules 94 (Hester, R.E. and Girling, R.B., eds.), The Royal Society of Chemistry, London, 235-238, (1991).

12. The Nature and Functional Implications of the Cytochrome a3 Transients Following Photodissociation of Carbon Monoxide from Reduced CO-Cytochrome Oxidase; W. H. Woodruff, O. Einarsdóttir, R. B. Dyer,  K. A. Bagley, G. Palmer, S.J. Atherton, R.A. Goldbeck, T.D. Dawes, and D.S. Kliger; Proc. Nat'l Acad. Sci. USA 88, 2588-2592 (1991).

11. Steady-State and Time-Resoved FTIR Spectroscopy of Quinones in Bacterial Reaction Centers;  D.L. Thibodeau, J. Breton, C. Berthomeau, K. A. Bagley, W. Mäntele, and E. Nabedryk; in Reaction Centers of Photosynthetic Bacteria (Michele-Byerle, M.E., Ed.) Springer-Verlag Series in Biophysics, Vol. 6, 87-98, (1991).

10. A Protein Conformational Change Associated with the Photoreduction of the Primary and Secondary Quinones in the Bactrial Reaction Center; E. Nabedryk, K. A. Bagley, D. L. Thibodeau, M. Bausher, W. Mäntele, and J. Breton; FEBS Letts. 266(1-2), 59-62 (1990).

9.  Investigation of Models for Photosynthetic Electron Acceptors: Infrared Spectroelectrochemistry of Ubiquinone and its Anions;  M. Bausher, E. Nabedryk, K. Bagley, J. Breton, and W. Mäntele; FEBS Letts. 261, 191-195 (1990).

8. Models For Ubiquinones and Their Anions, Involved in the Photosynthetic Electron Transfer, Characterized by Thin-layer Electrochemistry and FTIR/UV-Vis Spectroscopy; M. Bauscher, K. Bagley, E. Nabedryk, J. Breton, W. Mäntele; in Current Research in Photosynthesis, Volume I: Proceedings of the VIIIth International Congress on Photosynthesis, August '89 (M. Baltcheffsky, ed.) Kluwer Academic Publishers, Dordrecht; 81-84 (1990).

7. FTIR Studies of the D+QA- and D+QB- States in Reaction Centers from Rb. Sphaeroides;  K. A. Bagley, E. Abresch, M.Y. Okamura, G. Feher, M. Bauscher, W. Mäntele, E. Nabedryk, and J. Breton; in Current Research in Photosynthesis, Volume I: Proceedings of the VIIIth International Congress on Photo¬synthesis, August '89 (M. Baltcheffsky, ed.) Kluwer Academic Publishers, Dordrecht; 77-80 (1990).

6. A Comparitive Study of the Infrared Difference Spectra for Octopus and Bovine Rhodopsin and Their Bathorhodopsin Photointermediates; K.A. Bagley, L. Eisenstein, T. G. Ebrey, and M. Tsuda; Biochemisry 28, 3366-3373 (1989).

5. Infrared Studies of Bovine Rhodopsin and its Low Temperature Photointermediates, Bathorhodopsin and Isorhodopsin; K. A. Bagley, L. Eisenstein, W.-D. Ding, and K. Nakanishi, in Biophysical Studies of Retinal Proteins (T. Ebrey, H. Frauenfenlder, B. Honig, K. Nakanishi, eds.) University of Illinois Press, Urbana, Illinois; 110-119 (1987).

4. Fourier-Transform Infrared Difference Spectroscopy of Rhodopsin and its Photoproducts at Low Temperatures; K. A. Bagley, V. Balogh-Nair, A. Croteau, G. Dollinger, T. G. Ebrey, L. Eisenstein, M. Hong, K. Nakanishi, and J. Vittitow; Biochemistry 24(22), 6055-6071 (1985).

3. Trans/ 13-cis Isomerization is Essential for Both the Photocycle and Proton Pumping  of Bacteriorhodopsin; C. H. Chang, R. Govindjee, T. Ebrey, K. Bagley, G. Dollinger, L. Eisenstein, J. Marque, H. Roder, J. Vittitow, J. Fang, and K.Nakanishi; Biophys. J. 47 (4), 509-512 (1985).

2. Infrared Studies of the Photocycle of Bacteriorhodopsin; K. Bagley, G. Dollinger, L. Eisenstein, M. Hong, J. Vittitow, and L. Zimanyi; in Information and Energy Transduction in Biological Membranes ( E. Helmreich, ed.) Plenum Press, New York, 27-37, (1984).

1.  Fourier Transform Infrared Difference Spectroscopy of Bacteriorhodopsin and its Photoproducts; K. Bagley, G. Dollinger, L. Eisenstein, A. K. Singh, and L. Zimanyi; Proc. Natl. Acad. Sci., USA 79, 4972-4976 (1982).


 Science and Mathematics Complex:

     I am currently serving as the project shepherd for Buffalo State's Science and Mathematics Complex construction project.  This 220,000 square foot, $100 million project includes the construction of  new laboratory wing, which is linked to our current science building via a central atrium that places science on display via windows into the instructional laboratories.   The second phase of the project includes the  complete  renovation of the remaining portions of BSC's current Science Building as well as the construction of new lecture halls, a planetarium, vivarium, and greenhouse.  Further information concerning the project can be found at the Science Building Advocacy Committee's web site.


Postbaccalaureate Teacher Certification:

     I am  the academic advisor for students in the Chemistry Department's postbaccalaureate teacher certification program.  This program provides an avenue for those individuals who hold a chemistry or chemistry related baccalaureate degree to obtain the required qualifications to teach in New York State's high schools and middle schools.  Individuals wishing to teach chemistry at the high school level or general science in grades 7-8, are served by the department's  Chemistry Education (7-12; Certification Only) program. For those individual's wishing to be certified to teach science in grades 5-6 as well, we offer an extension to our 7-12 program called the Chemistry Education (7-12; 5-6 Extension;  Certification Only) program.  Individuals in both programs are placed for student teaching in the final semster of the program. While completing these programs, students have two academic advisors;  I advise on all matters related to their required chemistry coursework, while Dr. Joseph Zawicki , Department of Earth Science and Science Education, acts as the advisor for all matters related to the education coursework.



return to
top of page

Chemistry Department  | Programs Buffalo State College ]