

Examining the utility of epoxy replicas of single, natural fractures in dolostone for visualization experiments

Journal:	Hydrogeology Journal
Manuscript ID:	HJ-2006-0279.R2
Category:	Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Bergslien, Elisa; Buffalo State College, Earth Sciences and Science Education Fountain, John; North Carolina State University, Department of Marine, Earth and Atmopsheric Sciences
Keywords:	fractured rocks, groundwater flow, scale effects, physical modeling, aperture statistics

- Examining the utility of epoxy replicas of single, natural fractures in dolostone for 1 2 visualization experiments
- 3
- 4 Elisa Bergslien
- 5 Earth Science and Science Education Department, 217 Science Building, Buffalo State College, Buffalo,
- 6 New York. 14222 bergslet@buffalostate.edu (716) 878-793 fax: (716) 878-4524 7
- 8 John Fountain
- 9 Department of Marine, Earth and Atmospheric Sciences, 2800 Faucette Drive, Rm. 1125 Jordan Hall,
- 10 North Carolina State University, Raleigh, North Carolina, 27695-8208
- 11

ScholarOne support: (434)817.2040 ext. 167

12 Abstract

13	Epoxy casts were created of five naturally occurring fractures in dolostone and
14	aperture distribution was measured using a light attenuation method. The optically
15	determined aperture matrices showed a skew towards smaller apertures, with the larger
16	models demonstrating a lognormal distribution and the smaller models a normal
17	distribution. Surface variograms of each display a significant degree of anisotropy. The
18	models had spatial correlation ranges between 1.8 and 5 centimeters. The optical mean
19	aperture, mean hydraulic aperture and mass balance aperture were all determined. In
20	addition the coefficient of variation (C_v) and anisotropy ratio (AR) for each model was
21	determined, to compare their predictions with the actual tracer behavior in each of the
22	models. In all cases the hydraulically determined mean aperture was the same order of
23	magnitude as the optically determined mean aperture. The mass balance derived mean
24	aperture differed significantly from the optical mean aperture based on the degree of
25	channeling in the model. However, neither the C_v nor the AR correlated well to the actual
26	behavior of the tracers, suggesting they are insufficient to predict void connectivity.
27	Overall the epoxy replicas preformed moderately well and can be well characterized for
28	use in studies where visualization is of primary importance.
29	
30	

31 Keywords: fractured rocks; groundwater flow; physical modeling; aperture statistics

32 1. Introduction

33 An important distinction between flow in porous media and flow in fractured 34 media is that in fractured media, only the plane of the fracture is available for the 35 development of significant flow paths. The hydraulic conductivity of the rock matrix is often so low, on the order of $4.0 \times 10^{-6} - 8.0 \times 10^{-9}$ meters per second for the dolomites 36 37 used in this study, that it effectively confines the mobile fluids to the void space of the 38 fracture. Therefore accurate conceptualization of the distribution of flow paths within a 39 fracture is of great importance when modeling this type of flow. 40 Assuming that variations in aperture size in natural fractures are negligibly small 41 in comparison to the overall fracture length, early workers (e.g. Snow, 1965; 1968; 1969) 42 modeling flow behavior in single fractures assumed that fracture walls could be 43 represented by a parallel-plate model. Following this line of logic, laminar flow of an 44 incompressible fluid between two parallel flat plates can be described by the steady-state 45 solution to the Navier-Stokes equations for laminar flow (Romm, 1966; Witherspoon et

46 al., 1980):

47

$$Q = \frac{-\rho g}{12 \mu} b_h^3 \frac{W}{L} \Delta h; \qquad [1]$$

where Q is the volumetric flow rate, ρ and μ are the density and viscosity of the fluid respectively, g is the acceleration due to gravity, Δh is the change in hydraulic head through the flow domain, W is the fracture width, L is the fracture length, and b_h is the distance between the parallel plates (i.e. the aperture). This equation is frequently referred to as the "cubic law" (Witherspoon et al., 1980), and it suggests that the only impediment to characterizing flow in rough-walled fractures is the accurate characterization of the effective hydraulic aperture (b_h).

55	Mean aperture or hydraulic aperture are the terms typically applied to describe
56	the aperture determined from the results of flow experiments by calculation using the
57	cubic law. In this work the term <i>hydraulic aperture</i> will always refer to the aperture (b_h)
58	determined using the cubic law.
59	Another method to calculate the hydraulic equivalent aperture is based on tracer
60	tests through the fracture, described by Tsang (1992). A mass balance aperture is
61	determined using the relation $Qt_w = Ab_{m_s}$ where Q is the volumetric flow rate, t_w is the
62	mean residence time of the tracer transport as determined from the first time moment of
63	the measured breakthrough curve, A is the aerial extent of the fracture and b_m , is the mass
64	balance aperture thus determined. Tsang argues that the mass balance aperture should be
65	greater than or equal to the cubic law aperture. This relative size relationship occurs
66	because of the variability of fracture apertures in real rough-walled systems. It is the
67	smallest apertures within the fracture that control permeability as measured using the
68	cubic law, while mass balance tracer tests reflect the influence of the large aperture
69	channels, through which the solute migrates (Tsang, 1992). Tsang found the mass
70	balance aperture to be a good estimate of the arithmetic mean of all the apertures in the
71	fracture.
72	However, <u>since</u> fractures, clearly are not smooth, parallel-plates, nor can they be
73	assumed to behave as such over large areas (Brown and Scholz, 1985), the validly of the
74	hydraulic equivalent aperture approach has been challenged by a variety of authors (e.g.
75	Tsang and Tsang, 1987; Pyrak-Nolte et al., 1988; Moreno et al., 1988; Tsang et al.,

1988). Instead, evidence suggests that the variability of aperture within a natural fracture 76

Deleted: as Deleted: are

77	has a significant effect on the hydraulic behavior of that fracture, as flow will tend to
78	occur selectively through the largest apertures (Silliman, 1989).
79	Bourke (1987) demonstrated that the majority of flow in a fracture is limited to
80	only a few channels which may occupy as little as 10% of the fracture plane. Similarly,
81	Rasmuson and Neretnieks (1986) concluded that fluid flow was spatially isolated in only
82	10-20% of the fracture plane. Experiments at field scale suggest that there is a disparity in
83	the fluid flux observed at different locations within the same fracture plane (Heath, 1985;
84	Rasmuson and Neretnieks, 1986; Bourke, 1987). These results have given rise to the
85	"channel flow" concept and are obviously at odds with the assumption that variations in
86	aperture are negligible. Instead, it appears that an actual aperture distribution must be
87	known in order to correctly interpret flow.
88	There have been a variety of studies to characterize the distribution of apertures in
89	natural fractures, which can be grouped broadly into four categories: (1) calculation from
90	measurements of surface roughness (Gentier, 1986; Barton and Hsieh, 1989; Voss and
91	Shotwell, 1990) (2) casting techniques (Gale, 1987; Pyrak-Nolte et al., 1987; Gentier et
92	al., 1989; Billaux and Gentier, 1990) (3) creation of replicas (Hakami, 1988, 1995;
93	Hakami and Barton 1990; Hakami and Larsson, 1996) and (4) non-contact sensing
94	techniques (Johns et al., 1993; Kumar et al., 1995). Most of these groups, with certain
95	reservations, established that their apertures were normally or more often lognormally
96	distributed.
97	Neither surface roughness measurements, nor casts can be used for physical flow
98	experiments. Thus, there are only two approaches to visualizing flow in a fracture of
99	known aperture distribution. The first is through the creation of replicas, such as epoxy

111	2. Methodology:
110	
109	Fountain, 2006).
108	this study were created for use in non-aqueous phase liquid flow studies (Bergslien and
107	process and present a brief geostatistical analysis of the models created. The models in
106	goal of the present study is to present a detailed description of an epoxy model creation
105	aperture distribution at differing degrees of wettability (Bergslien et al., 2004). Thus, the
104	models can be systematically altered, allowing for multiple examinations of the same
103	additional advantage to the replica approach is that the surface chemistry of epoxy
102	research groups whose primary goal is to conduct visualization experiments. An
101	resonance imaging (MRI). The latter approach is prohibitively expensive for many
100	casts, the second is though the use of non-contact sensing techniques such as magnetic

112 Samples of unweathered, fractured rock were collected from exposed sections of 113 the Gasport, Goat Island, and Eramosa Formations of the Lockport Group from a variety 114 of quarries located in western New York and Ontario, Canada. The Lockport Group is a 115 Silurian age upwardly shallowing depositional carbonate sequence consisting, in the 116 Niagara region of New Yomate and Ontario, Canada, of <u>49 – 54 meters (160 – 175</u> 117 feet) of massive to medium-bedded dolomite with minor amounts of dolomitic limestone 118 and shale (Brett et al., 1995). The Lockport Dolomite is pervasively fractured and is 119 contaminated by non-aqueous phase liquids (NAPLs) at numerous sites throughout the 120 Niagara Falls and neighboring regions. 121 Samples of various sizes with visible, unopened fractures were collected at field

122 sites in western New York and southern Ontario, Canada. These samples were cut into

Comment [EB1]: These are stratigraphic units and I have referred to them using normal terminology. I am not sure what you want me to do to – what is the standard for your journal when referencing geologic units? The Lockport Group is a geologic unit that reaches from the middle of New York State under the Great Lakes into Canada and out into Ohio, each of the names refers to a specific section of the Lockport group, not to a geographic location.

Deleted: o

123	rectangles using a diamond blade rock saw before being opened along the fracture plane	
124		Deleted: use
124	by the slow application of shear stress using an off-set vise and <u>a set of small wedges</u>	
125	(Figure 1a). Samples which displayed significant weathering were discarded. Fracture	
126	types collected consisted of bedding plane fractures, stylolitically controlled fractures,	
127	vertical fractures, and fractures with secondary mineral infill.	
128	Using a method based on the work described in Persoff and Pruess (1995), and	
129	Hakami and Barton (1990), which was in turn based on Gentier (1986), a fracture casting	
130	technique was developed for the creation of translucent plastic models of natural	
131	fractures. The prepared rock samples were heated for approximately one hour at 50°C in	
132	a constant temperature cabinet. The samples were then removed from the oven and the	
133	exposed fracture surfaces were coated with a thin layer of vacuum degassed two-part	
134	silicone rubber, which was allowed to cure for several hours. Heating the rock	
135	significantly improves the flow of the silicone into the rough fracture surface. The	
136	silicone used in this study is specially designed for mold making and small parts casting,	
137	and can create molds with "precision surface detail up to 1 micron" (Silpack Inc., 1996).	
138	To create the mold, a rigid steel tray was filled with vacuum degassed silicone to	Delete de l'11
139	a depth sufficient to ensure that the entire rock fracture surface would be at least 1 cm	Deleted: will
140	below the surface of the silicone. The coated fracture was immersed in the silicone	Deleted: is
141	slowly at an angle to allow air to escape (Figure 1b). The mold was allowed to cure for a	Deleted: is
1 1 1		
142	minimum of 24 hours at room temperature. Then to increase the rigidity of the mold and	
143	to ensure that it was free of excess moisture, the mold was given an hour long post cure	Deleted: is
144	treatment at 150° C with the rock still in place (Figure 1c) After the post cure the rock	
- • •		

		1	Deleted: is
145	was removed from the silicone mold, the surface gently cleaned and the mold was stored	<u>[</u>	Deleted: mold
140			Deleted: is
146	in a desiccant chamber (Figure 1d).		Deleted: it
147	The fracture cast was created using Stycast 1267 two-part enoxy resin (Robert		Deleted: is
14/	The fracture cast was created using by cast 1207 two-part cpoxy resin (robert		Deleted: is
148	McKeown Co.). This epoxy is related to the Eccobond 27 epoxy used in several past		
149	studies in the literature, which was manufactured by W.R. Grace Company prior to 2001.		Deleted: is
150	The epoxy was mixed and vacuum degassed before being poured into a cleaned silicone		
151	mold in several thin layers, each of which was allowed to cure before the addition of the		
152	next layer (Figure 1e) After the final layer of enoxy was noured the cast was allowed to	1	Deleted: is
132	next layer (Figure Te). After the final layer of epoxy was poured the cast was anowed to	2	Deleted: 18
153	cure for a minimum of 24 hours in a desiccant chamber, and then post cured at 150°C for		
154	one to one and a half hours (Figure 1f). The post cure is essential for increasing the		Deleted
155	rigidity of the model. The casts were then removed from the mold and stored in a		
156	desiccant chamber until use (Figure 1g).		Delated
157	The transparent fracture casts were assembled to form a model of the natural		Deleted: are
150	$(\Gamma_{1}, \ldots, \Gamma_{n})$	1	Deleted: is
158	fracture (Figure In). A heat molding process was used to ensure that the model had a	1	Deleted: has
159	tight fit. The assembled model was placed in a press with an average of 5 g/cm ² applied	l'	Deleted: is
160	to the models. This was the maximum pressure that could consistently be applied to the		
161	models without causing the casts to adhere to each other. Use of this process significantly		
162	improved the rigidity of the models, without significantly effecting the aperture		
163	distribution. The assembled model was then heated to 75°C for three hours and then		Deleted: is
174		1	Deleted: is
164	allowed to cool for a minimum of 24 hours before it was removed from the press.	1	
165	Several attempts were made to find a method to macroscopically quantify the		
166	accuracy of these models, including manual and laser profilometry, and digital		
167	topographic analysis but, to date, no satisfactory method of analysis has been found. In		

168	the words of Brown et al. (1998) "the final epoxy replicas were checked for quality of	
169	reproduction by hand fitting them to each other and comparing these to the fit of the	
170	two original rock surfaces."	
171		Deleted: preparation
1/1	In the final stage of preparation, the epoxy replica was reassembled to form a	- Deleted: is
172	model of a natural fracture. The model was sealed along two opposite edges using	 Formatted: Indent: First line: 36 pt Deleted: is
173	Evercoat Formula 27 All-Purpose Filler, a two-part polyester resin which is water-proof	
174	and has no shrinkage, to form no-flow boundaries. The remaining sides were turned into	Deleted: are
175	source and sink areas using channeled plastic, which allowed uniform flow of water into	Deleted: allows
176	and out of the fracture edges Assembled models were flooded with CO ₂ for a minimum	Deleted: are
170		Deleted: ¶
177	of one hour before liquid saturation.	
178		Deleted: ¶
179	3. Aperture Distribution Measurements	
180		Deleted: is
181	Aperture distribution within the fracture models was determined using a light	,
182	transmittance technique by applying the Beer-Lambert law to the adsorption of light	
183	through fractures filled with dyed liquidThe Beer-Lambert law states that the	
184	absorbance of light (A) thought a dyed medium is equal to the product of the molar	
185	absorptivity of the dye (a), the path length or in this case the fracture aperture parallel to	
186	the incident light, (b), and the concentration of the dye (c) (Denny and Sinclair, 1987).	
187	Molar absorptivity is a constant for a particular compound in a particular solvent at a set	
188	wavelength, and dye concentration is a controlled constant. This leaves absorbance and	
189	path length the only variables.	
190	Because the Beer-Lambert law is technically only valid for polar, monochromatic	
191	light, a specially designed light box, which uses a mirror apparatus to direct parallel	

192	incident light to the camera, and a band-pass filter array, which lets only a very narrow	
193	range of wavelengths pass into the camera, was used to come as close to these restrictions	Deleted: are
175	Tange of wavelenguis pass into the camera, <u>was</u> used to come as crose to these restrictions - >	Deleted: is
194	as possible (Figures 2). This entire apparatus was also encased in blackout cloth to block	
195	all stray light. For the law to be valid the relationship between absorbance and path	
196	length must be linear, and with this equipment, it is possible to establish a linear	
197	relationship between absorbance and path length (in this case aperture), using narrow	
198	band polychromatic light (Figure 3).	
199 200		
200		Deleted: is
201	Light attenuation was measured using a grayscale, 10-bit charge-coupled device	
202	(CCD) camera with 1030 x 1300 resolution (DVC-1300 High Resolution Video Camera;	
203	DVC Company), by taking two still images of the fracture model, one with the fracture	
204	filled with water and one with the fracture flooded with a dye of known concentration.	
205	The dye standard, denoted 100% Liquitint standard, was created using 1mL Liquitint	
206	Blue HP dye from Milliken Chemical per 1L of distilled water. CCD response is	
207	inherently linear, eliminating camera response as a potential erratic variable (Russ, 1995).	Deleted:
208	The dyed image was divided by the water image to get transmittance (T), which is	
209	converted to absorbance by applying the relationship $A = log_{10}(1/T)$ (Denny and Sinclair,	
210	1987). Absorbance <u>was</u> converted to aperture at each pixel of the fracture, by correlating	
211	the absorbance values for the fracture image to the absorbance values for test cells of	
212	known separation distance using a calibration curve (Figure 2). Using this method it is	
213	possible to achieve a working accuracy of approximately +/- 0.005 millimeters.	
214		
215		

216	This method of calibrating aperture directly to transmittance is significantly	
217	different from the one developed by Detwiler et al. (1999), in which the measured	
218	aperture field was not related to a calibration curve, but was instead quantified using a Deleted: is	
219	series of images of known dye concentration and the authors presented a method of	
220	minimizing measurement error statistically.	
221	A set of five replicas of natural fractures were used in this study (Table 1). For	
222	each of the fracture models, the mean aperture for each pixel in their <u>computer-generated</u>	
223	images was calculated using Scion Image, a Windows based version of NIH Image	
224	(National Institute of Health), and ENVI 3.4 (Research Systems, Inc.)The optical	
225	aperture distribution matrix of each of the models was created using the basic math	
226	function of ENVI 3.4 and the appropriate calibration curve (Figure 3). In all cases one	
227	pixel is approximately equal to 140 microns in both the x (left to right) and y (top to	
228	bottom) directions (Figure 4).	
229		
230		
231	From each data set an arithmetic mean optical and geometric mean optical	
232	aperture was determined for each replica (Table 2). The geometric mean aperture (b_{geo}) is	
233	calculated from the following relationship:	
234	$b_{geo} = \left(\prod_{i=1}^{n} a_i\right)^{1/n} $ [2]	
235	where n is the number of data points in the matrix and a is the value of each individual	
236	data point.	
237	The coefficient of variation (C_{ν}) for each fracture was also determined (Table 2).	
238	The C_{ν} , which is an indicator of fracture heterogeneity, is defined as the ratio of the	

239 standard deviation to the arithmetic mean aperture (Lee et al., 2003). Higher C_{ν} values 240 are indicative of greater deviation from the parallel plate model, thus more tortuous flow 241 and greater solute dispersivity. 242 243 244 245 Deleted: are 246 For comparison the mean hydraulic aperture and the mass balance aperture were 247 also determined for each of the replicas (Table 2). The hydraulic aperture (b_h) is 248 determined using the cubic law as follows: $b_h = \sqrt[3]{\frac{12\mu Q}{\rho g \Delta h} \left(\frac{L}{W}\right)};$ 249 [3] 250 variables as defined previously [1] (Tsang, 1992). The cubic law can be used as a first 251 order approximation of the average fracture aperture, but in rough walled fractures 252 actually represents a complex geometric mean that is weighted towards the smaller 253 apertures (Tsang, 1992; Oron and Berkowitz, 1998). Brown (1984) suggested that the 254 hydraulic aperture for an isotropic aperture field should actually be equal to the 255 geometric mean of the aperture distribution, thus theoretically the greater the deviation between b_{geo} and b_h, the greater the likelihood of anisotropy. 256 Deleted: is 257 The mass balance aperture (b_m) was calculated using tracer tests using a 1000ppm 258 (parts per million) sodium bromide solution. Head on each of the water-saturated Deleted: is 259 replicas was adjusted until a discharge rate of approximately 1mL per 18 seconds was Deleted: is 260 achieved (except model RN9, which had a flow rate of approximately 1mL per 6 seconds. 261 The inlet is then switched to the 1000ppm NaBr solution and a timer started. For each Deleted: 262 replica a one 5mL sample of the effluent was taken every 90 seconds and mixed with Deleted: 0

276 previously (Tsang, 1992). The mean residence time of the tracer (t_m) is found from the

277 relationship:

278

$$t_m = \frac{\int\limits_0^0 t C(t)}{\int\limits_0^0 C(t)};$$
[5]

as described in Gaspar (1987). The time delay (t_{dv}) as the tracer moves though dead volume $(V_{dv})_{a}$ such as empty tubing, was calculated for time correction. It is assumed that no dispersion occurs in the dead volume (V_{dv}) , therefore $t_{dv} = V_{dv}/Q$, leading to the corrected mean residence time $t_{w} = t_{m} - t_{dv}$.

283	The mass balance aperture (b _m) represents the true arithmetic mean of the aperture
284	distribution, and therefore <u>should</u> always be larger than the hydraulic aperture. In
285	essence, while small apertures control the permeability and thus the hydraulic aperture of
286	a fracture, the mass balance aperture is strongly influenced by the largest apertures which
287	present the most direct pathway for solute transport. Tsang (1992) found the mass
288	balance aperture to be a very good estimate of the "equivalent aperture" for single
289	fractures.
290	

291 4. Statistical Parameters

Statistical analysis of the optically determined aperture matrices show<u>ed</u> a skew towards smaller apertures. In general, the larger models (RN3, RN4, RN9) appear to have lognormal aperture distributions (R^2 values 0.95, 0.92 and 0.88 respectively), and the smaller models (S1, SRN31) appear to have normal aperture distributions (R^2 values of 0.97 and 0.93 respectively).

297 Surface variograms of each of the models were created based on a spherical 298 model, by randomly selecting 200 points out of each of the data sets and using GS+ 299 (Gamma Design Software). Surface variograms are used to give a general overview of 300 the anisotropy of the data and to aid in the identification of the major and minor axes of 301 anisotropy (Isaaks and Srivastava, 1989). Each of the surface variograms produced in 302 this study displays a significant degree of anisotropy and suggests that replica RN3 303 displays the highest degree of roughness, while RN4 displays the least roughness. These 304 results appear to be somewhat at variance with those of Hakami (1995), that the greater

305	the surface roughness of the fracture the more likely it will fit a lognormal distribution.
306	In that case, replica S1 or SRN1 should have showed the least surface roughness.
307	Omnidirectional and directional semivariograms for each of the replicas were
308	created with Gstat (Pebesma & Wesseling, 1998) using the best-fit spherical model. There
309	is a limited amount of data in the literature regarding the spatial correlation of apertures
310	within a fracture plane. Gelhar (1993) suggests, based on stochastic analysis and field
311	tracer tests, that fractures may have correlation lengths of less than a meter. Hakami
312	(1995) found spatial correlation lengths from 1 to 5 centimeters. On the other hand,
313	Vickers et al. (1992) believe that fractures are actually autocorrelated at two scales; on
314	the order of a few millimeters and on the order of tens of centimeters. Kumar et al.
315	(1995) used nuclear magnetic resonance imaging techniques to measure aperture and
316	suggest that apertures are correlated over lengths on the order of one centimeter. The
317	omnidirectional semivariograms for this study indicate that the fracture replicas have
318	spatial correlation ranges between approximately 1.8 and 5 centimeters (Table 3), which
319	compares well with the results reported by Hakami (1995) and Kumar et al. (1995).
320	The directional variograms generated confirm that the models all have some
321	degree of anisotropy, with SRN31 having the greatest degree and both RN4 and RN9
322	having the lowest degree. The anisotropy ratio (AR), defined as the ratio of the
323	longitudinal correlation length (λ_L) to the transverse correlation length (λ_T), is another
324	method of characterizing the overall degree of anisotropy of the aperture distribution (Lee
325	et al., 2003) (Table 3).
326	
327	5. Results and Conclusions

Deleted: s

Deleted: best fit

In all cases the hydraulically determined mean apertures of the replicas used in

Deleted: backward

329	this study were the same order of magnitude, but an average of $300\mu m$ smaller than the
330	optically determined arithmetic mean aperture. This is unsurprising, as the smallest
331	apertures control the hydraulic mean aperture, and agrees with the supposition of Tsang
332	(1992)
222	
333	The optical geometric mean apertures were on average 190µm larger than the
334	hydraulically determined mean apertures. The greatest difference was for model SRN31
335	while the least difference was for model RN3. Based on the statistical analysis, replica
336	SRN31 actually displays the highest degree of anisotropy, while RN4 and RN9 display
337	the least. This is almost <u>the reverse</u> of the prediction based on difference from geometric
338	mean, indicating that it cannot be used predicatively in this way.
339	The mass balance derived average apertures had the most variation. According to
340	Tsang (1992), the mass balance aperture should represent the pore volume of the fracture
341	and be a true arithmetic mean of the actual aperture distribution, represented here by the
342	optical arithmetic mean aperture. For models RN3 and RN9, the largest models spatially,
343	there is good agreement between the optically determined arithmetic mean apertures and
344	the mass balance mean apertures (Table 3). This suggests the least channeling and lower
345	surface roughness for these models. However, replica RN3 has the highest C_v (0.94) out
346	of all of the models, and the surface variogram indicates this model should have the
347	greatest surface roughness out of all of the models. The AR for RN3 is moderate (0.59)
348	again suggestive of some degree of channeling. Replica RN9, on the other hand, has a
349	moderate $C_v(0.63)$ and the AR is close to unity, which is more in keeping with the results

350 of the tracer test.

328

16

ScholarOne support: (434)817.2040 ext. 167

351	For model RN4, the mass balance aperture is roughly double the optical
352	arithmetic mean aperture, though still of the same magnitude (Figure 6). It has been
353	demonstrated in several studies that mean fracture apertures derived from tracer tests can
354	be as much as 2 to 3 orders of magnitude higher than hydraulic mean apertures (e.g.
355	Neretnieks, 1993; Shapiro and Nicholas, 1989). The general assumption is that while
356	hydraulic mean apertures are strongly controlled by the smallest apertures, solvents will
357	preferentially travel though the largest apertures, potentially resulting in significant
358	discrepancies between the two measures of aperture. The C_v of RN4 is quite high (0.81),
359	suggesting a high degree of surface roughness and significant channeling, which agrees
360	with the results of the tracer tests. The AR, which is identical to that of replica RN4, is
361	close to unity, indicating a low degree of anisotropy.
362	
262	
363	
363 364	Model S1, the smallest of the replicas used, had a mass balance mean aperture
363 364 365	Model S1, the smallest of the replicas used, had a mass balance mean aperture slightly less than three times greater than the optically determined arithmetic mean
363364365366	Model S1, the smallest of the replicas used, had a mass balance mean aperture slightly less than three times greater than the optically determined arithmetic mean aperture (Figure 7). The tracer test on this model was repeated, with the same results.
 363 364 365 366 367 	Model S1, the smallest of the replicas used, had a mass balance mean aperture slightly less than three times greater than the optically determined arithmetic mean aperture (Figure 7). The tracer test on this model was repeated, with the same results. Based on the results of the tracer tests, while replica S1 has the smallest hydraulic mean
 363 364 365 366 367 368 	Model S1, the smallest of the replicas used, had a mass balance mean aperture slightly less than three times greater than the optically determined arithmetic mean aperture (Figure 7). The tracer test on this model was repeated, with the same results. Based on the results of the tracer tests, while replica S1 has the smallest hydraulic mean aperture, there is a zone of connected high aperture void space that allows for rapid solute
 363 364 365 366 367 368 369 	Model S1, the smallest of the replicas used, had a mass balance mean aperture slightly less than three times greater than the optically determined arithmetic mean aperture (Figure 7). The tracer test on this model was repeated, with the same results. Based on the results of the tracer tests, while replica S1 has the smallest hydraulic mean aperture, there is a zone of connected high aperture void space that allows for rapid solute transport. This finding would suggest that S1 should also have a high degree of surface
 363 364 365 366 367 368 369 370 	Model S1, the smallest of the replicas used, had a mass balance mean aperture slightly less than three times greater than the optically determined arithmetic mean aperture (Figure 7). The tracer test on this model was repeated, with the same results. Based on the results of the tracer tests, while replica S1 has the smallest hydraulic mean aperture, there is a zone of connected high aperture void space that allows for rapid solute transport. This finding would suggest that S1 should also have a high degree of surface roughness and anisotropy, though the measures applied, C _v and AR, appear contrary to
 363 364 365 366 367 368 369 370 371 	Model S1, the smallest of the replicas used, had a mass balance mean aperture slightly less than three times greater than the optically determined arithmetic mean aperture (Figure 7). The tracer test on this model was repeated, with the same results. Based on the results of the tracer tests, while replica S1 has the smallest hydraulic mean aperture, there is a zone of connected high aperture void space that allows for rapid solute transport. This finding would suggest that S1 should also have a high degree of surface roughness and anisotropy, though the measures applied, C_v and AR, appear contrary to this. Replica S1 has the lowest C_v (0.48) implying that the fracture displays the least
 363 364 365 366 367 368 369 370 371 372 	Model S1, the smallest of the replicas used, had a mass balance mean aperture slightly less than three times greater than the optically determined arithmetic mean aperture (Figure 7). The tracer test on this model was repeated, with the same results. Based on the results of the tracer tests, while replica S1 has the smallest hydraulic mean aperture, there is a zone of connected high aperture void space that allows for rapid solute transport. This finding would suggest that S1 should also have a high degree of surface roughness and anisotropy, though the measures applied, C_v and AR, appear contrary to this. Replica S1 has the lowest C_v (0.48) implying that the fracture displays the least heterogeneity and therefore the least channeling. The anisotropy ratio calculated for S1 is

373	0.51, close to the value for RN3	(0.59)	, which has behaved	completely the opposite v	with
	,	<hr/>		1 2 11	

374 very similar optical arithmetic and hydraulic mean apertures.

375 376

377	Model SRN31 is the second smallest of the models and has a normal aperture
378	distribution, similar in character to S1 (Figure 8). Also similar to S1, the mass balance
379	was approximately two times larger than the optical arithmetic mean aperture. Again this
380	would suggest that there is a significant channeling effect that allows rapid solute
381	transport. Replica SRN31 did have the anisotropy ratio that deviated most from unity
382	(0.33), which indicates a high degree of anisotropy, though the C_v (0.68) suggests only a
383	moderate degree of surface roughness.
384 385	
386	Thus, neither of the geostatistial approaches examined, C_v and AR, appear to be
387	good predictors of tracer behavior in the replicas examined. There was no correlation
388	between the results of these measures and the actual behavior of the tracer in the models.
389	This suggests that these measures, while reflective of some of the physical properties of
390	the fractures, are insufficient to capture the connectivity of the void space.
391	Overall the models compare well with other results found in the literature (Table
392	4). The major deficiency of these models is due to the inherent flexibility of the epoxy,
393	which has a tendency to bow when large sections are unsupported. For small models, less
394	than 20 cm x 20 cm, the casting method presented ensures sufficient rigidity that
395	deformation is minimized. The smaller models (S1 and SRN31) experienced less than a
396	1% change in aperture distribution over time, while the larger models experienced less

397	than an 8% change, on average; the larger the area of the model, the greater the potential
398	for deformation.
399	The application of a compressive force to the models during experiments would
400	help alleviate this problem and increase the scope of these studies. A larger model with
401	small metal frame was created in an attempt to compress the central regions of the
402	models, but it was only useful for a short period of time and partially defeated the
403	purpose of creating transparent models. Compression between two sheets of glass or
404	within a hydraulic mechanism might be a more useful approach. Without such support,
405	this limits the utility of this approach to models that are at maximum approximately 30
406	cm x 30 cm. Another obstacle to scaling up epoxy models is the exothermic reaction of
407	curing epoxy, large volumes of which will experience uneven curing, which destroys
408	surface roughness detail, and <u>causes</u> bubbling in the plastic.
409	There are currently few approaches available to researchers interested in
410	visualization of flow and transport in fractures. While the epoxy model approach has
411	some significant deficiencies, it is currently the cheapest and most flexible of the
412	available physical modeling approaches. The degree of accuracy with which the models
413	replicate actual fracture surfaces is an active matter of debate, and to date there is no
414	commonly available technology to characterize actual fracture apertures for comparison.
415	One strength in the epoxy model approach lies in the ease of fully characterizing the
416	models, so that any visualization experiments can be conducted in a well-characterized
417	aperture field. Researchers must weigh the deficiencies of the method against the benefits
418	of utilizing a low cost visualization method (verses magnetic resonance imaging etc.) for Deleted: R
419	the task at hand.

Formatted: Font: Bold

420	▲
421	Acknowledgements: The initial stages of this work were performed at the University at
422	Buffalo with pilot grants from the Mark Diamond Fund and the Geological Society of
423	America. A Research Incentive Grant from the Research Foundation at Buffalo State
424	College assisted in the completion of this study. The authors would like to thank the
425	above organizations and to thank the reviewers and editors who have helped bring this
426	article to press

References

- Barton C. C., and P.A. Hsieh. (1989) Physical and Hydrological Flow Properties of Fractures *in Field Trip Guidebook T385*, 36 p.
- Bergslien, E.T., Fountain, J.C. and Giese, Jr. R. (2004) Characterization of the surface properties of epoxy-type models used for multiphase flow studies in fractured media and creation of a new model, *Water Resources Research*. Vol. 40 (5), W05112.
- Bergslien, E.T., and J.C. Fountain (2006) The effect of changes in wettability on twophase saturated flow in horizontal replicas of single natural fractures, *Journal of Contaminant Hydrology*, 88(3-4), 153-180.
- Billaux, D., and S. Gentier. (1990) Numerical and Laboratory Studies of Flow in a Fracture, *in Proceedings of the International Conference on Rock Joints*, Loen, Norway. Rotterdam: Balkema, pp. 369-374.
- Bourke P. J. (1987) Channeling of flow through fractures in rock in Proceedings of GEOVAL-87 International Symposium.
- Brett, C.E., D.H. Tepper, W.M. Goodman, S. T. LoDuca, and B. Eckert (1995) Revised Stratigraphy and Correlations of the Niagaran Provincial Series (Medina, Clinton, and Lockport Groups) in the Type Area of Western New York. U.S. Geological Survey Bulletin 2086, 66 pp.
- Brown, D.M. (1984) Stochastic analysis of flow and solute transport in a variableaperture rock fracture. M.S. thesis, Mass. Inst. Of Technology, Cambridge.
- Brown, S., A. Caprihan, and R. Hardy. (1998) Experimental observation of fluid flow channels in a single fracture. *Journal of Geophysical Research*. 103(B3): 5125-5132.
- Brown S. R., and C.H. Scholz. (1985) Closure of random elastic surfaces in contact. *Journal of Geophysical. Research*. 90(B7), 5531-5545.
- Denny R. C. and R. Sinclair (1987) *Visible and Ultraviolet Spectroscopy*. John Wiley and Sons.
- Detwiler, R. L., S.E. Pringle, and R.J. Glass (1999) Measurement of fracture aperture fields using transmitted light: An evaluation of measurement errors and their influence on simulations of flow and transport through a single fracture. *Water Resources Research*, 35(9), 2605 2617.
- Gale J. E. (1987) Comparison of coupled fracture deformation and fluid flow models with direct measurements of fracture pore structure and stress-flow properties *in Proceesings of the 28th U.S. Symposium on Rock Mechanics*, 1213-1222.
- Gale J. E. (1990) Hydraulic behavior of rock joints in Rock Joints, Proceedings of the International Symposium on Rock Joints, 351-362.
- Gaspar, Emilian (1987) Modern Trends in Tracer Hydrology. CRC Press Inc., 145 p.
- Gelhar L. W. (1993) Stocastic Subsurface Hydrology. Prentice Hall, 390 pp.
- Gentier S. (1986) Morphologie et comportement hydromecanique d'une fracture naturelle dans un granite sous contrainte normale <u>(Hydromechanical morphology</u> <u>and behavior of a natural fracture in a granite under normal stress)</u>. Ph.D., Univ. d'Orleans, France

Formatted: Font: Italic

Gentier S., Billaux, and L. Van Vliet. (1989) Laboratory testing of the voids of a fracture. *Rock Mechanics* 22, 149-157.

- Hakami, E. (1988) Water flow in single rock joints. Licentiate Thesis, Luleå University of Technology, Luleå, Sweden.
- Hakami, E. (1995) *Aperture Distribution of Rock Fractures*. Ph.D., Royal Institute of Technology, Stockholm, Sweden.
- Hakami E., and N. Barton. (1990) Aperture measurements and flow experiments using transparent replicas of rock joints in *Proceedings of the First International Symposium on Rock Joints*, 383-390.
- Hakami, E., and E. Larsson (1996) Aperture measurements and flow experiments on a single natural fracture. *International Journal of Rock Mechanics, Mining Sciences and Geomechanics abstracts.* 33(4), 395 – 404.
- Heath, M.J. (1985) Solute migration experiments in fractured granite, South West England, in design and instrumentation of in situ experiments in underground laboratories for radioactive waste disposal, *in* A.A. Balkema (ed.) *Proc. of a Joint CEC-NEA Workshop*, pp. 191 – 200.
- Isaaks, E.H. and R.M. Srivastava (1989) *An Introduction to Applied Geostatistics*. Oxford University Press, New York, New York. 561p.
- Johns R. A., J.S. Steude, L.M. Castanier, and P.V. Roberts. (1993) Nondestructive measurements of fracture aperture in crystalline rock cores using X-ray computed tomography. J. Geophys. Res. 98(B2), 1889-1900.
- Kumar A. T. A., P.D. Majors, and W.R. Rossen. (1995) Measurement of aperture and multiphase flow in fractures using NMR imaging *in Proceedings of SPE Annual Technical Conference and Exhibition*, SPE Paper 30558.
- Lee, J., M. Kang, and J. Choe (2003) Experimental analysis on the effects of variable apertures on tracer transport. *Water Resour. Res.* 39(1), 1015, doi:10.1029/2001WR001246.
- Moreno L., Y.W. Tsang, C.F. Tsang, F.V. Hale, and I. Neretnieks. (1988) Flow and tracer transport in a single fracture: a stocastic model and its relation to some field observations. *Water Resour. Res.* 24(12), 2033-2048.
- Neretnieks, I. (1993) Solute transport in fractured rock Applications to radionuclide waste repositories, *in Flow and Contaminant Transport in Fractured Rock*, eds. J. Bear, C.F. Tsang, and G de Marsily, Academic Press, San Diego, CA, pp. 39-127.
- Oron, A.P. and B. Berkowitz (1998) Flow in rock fractures: the local cubic law assumption reexamined. *Water Resources Research*. 34(11), 2811 2825.
- Pebesma, E.J. and C.G. Wesseling (1998) Gstat, a program for geostatistical modelling, prediction and simulation. *Computers & Geosciences* 24 (1), 17–31. Homepage http://www.gstat.org/index.html last accessed 08/14/2007.
- Persoff P., and K. Pruess. (1995) Two-phase flow visualization and relative permeability measurement in natural rough walled fractures. *Water Resour. Res.* 31(5), 1175-1186.
- Pyrak-Nolte L. J., L.R. Myer, N.G.W. Cook, and P.A. Witherspoon. (1987) Hydraulic and mechanical properties of natural fractures in low permeability rock *in Proceedings of the 6th International Congress on Rock Mechanics*, 225-231.
- Pyrak-Nolte L. J., N.G.W. Cook, and D.D. Nolte. (1988) Fluid percolation through single fractures. *Geophys. Res. Letters* 15(11), 1247-1250.

Deleted: ¶

- Rasmuson, A. and I. Neretnieks (1986) Radionuclide migration in strongly fissured zones; the sensitivity to some assumptions and parameters. *Water Resources Research.* 22(4), 559 569.
- Raven K. G., and J.E. Gale. (1985) Water flow in a natural rock fracture as a function of stress and sample size. *Int. J. Rock Mech. Min. Sci. Geomech. Abstr.* 22, 251-261.
- Romm E. S. (1966) *Fluid Flow in Fractured Rock*. (in Russian) 283 pp. Nedra, Moscow, Russia. Translated by the Phillips Petroleum Company in 1972, 283 p.
- Russ, J.C. (1995) *The Image Processing Handbook 2nd Edition*. CRC Press, Boca Raton, Florida. 674p.
- Shapiro, A.M. and J.R. Nicholas. (1989) Assessing the validity of the channel model of fracture aperture under field conditions. *Water Resources Research*. 25, 817 – 828.
- Silliman S. E. (1989) An interpretation of the difference between aperture estimates derived from hydraulic and tracer tests in a single fracture. *Water Resour. Res.* 25(10), 2275-2283.
- Silpack Inc. (1996) Silpack Inc. Technical Data Sheet, Pamona, CA., Silpack Inc. 4p.
- Snow D. T. (1965) Parallel plate model of fractured permeable media. Ph.D., Univ. of Calif.
- Snow D. T. (1968) Rock fracture spacings, openings, and porosities. J. Soil Mech. Fdns. Div. Am. Soc. Civ. Engrs. 94(SM1), 73-91.
- Snow D.T. (1969) Anisotropic permeability of fractured media. *Water Resources Research.*5, 1273 – 1289.
- Tsang Y.W. (1992) Usage of "equivalent apertures" for rock fractures as derived from hydraulic and tracer tests. *Water Resources Research*. 28(5), 1451-1455.
- Tsang Y.W., and C.F. Tsang (1990) Hydrological characterization of variable-aperture fractures, *in International Symposium on Rock Joints*, A.A. Balkema, Brookfield, VT. pp. 423-430
- Tsang Y. W., and C.F. Tsang. (1987) Channel model of flow through fractured media. *Water Resour. Res.* 23(3), 467-479.
- Tsang Y. W., C.F. Tsang, I. Neretnieks, and L. Moreno. (1988) Flow and tracer transport in fractured media: a variable aperture channel model and its properties. *Water Resour. Res.* 24(12), 2049-2060.
- Vickers B. C., S.P. Neumann, M.J. Sully, and D.D. Evans. (1992) Reconstruction and geostatistical analysis of multiscale fracture apertures in a large block of welded tuff. *Geophys. Res. Letters* 19(10), 1029-1032.
- Voss, C.F. and L.R. Shotwell (1990) An investigation of the mechanical and hydrologic behavior of tuff fractures under saturated conditions. *in Proceedings of High Level Radioactive Waste Management*. American Nuclear Society. 825 – 834.
- Witherspoon P. A., J.S.Y. Wang, K. Iwai, and J.E. Gale. (1980) Validity of the cubic law for fluid flow in a deformable rock fracture. *Water Resour. Res.* 16(6), 1016-1024

Figures:

Figure 1: Mold Creation and Casting Process. See text for description of the process. <u>Figure not to scale.</u>

Figure 2: Transmittance verses Wavelength for Experimental Setup

Figure 3: Linear Calibration Curves for LIQUITINT Blue Dye<u>at three different</u> concentrations

Figure 4: Optically Determined Aperture Distribution for Model RN3. Direction of flow indicated by arrow.

Figure 5: Bromide Breakthrough Curves <u>shown in Normalized Concentration (Effluent</u> <u>Concentration divided by Initial Concentration)</u>

Figure 6: Optically Determined Aperture Distribution for Model RN4. Direction of flow indicated by arrow.

Figure 7: Optically Determined Aperture Distribution for Replica S1. Direction of flow indicated by arrow.

Figure 8: Optically Determined Aperture Distribution for Model SRN31. Direction of <u>flow indicated by arrow.</u>

-	Comment [EB3]: This is just an illustration of the process, not a specific model, so I can be a scale bar. I added a metric scale hat says "not to scale."
-	Comment [EB4]: I have spelled out standard and tried to clarify the curves.
1	Comment [EB5]: Absorbance is unitless. It is a ratio so the units cancel

out and none should be listed

Tables:

Table 1 - Description of Fracture Models Used in Study						
Model	RN3	RN4	RN9	S1	SRN31	
Width (cm)	13.6	15.9	~20	7.9	6.5	
Length (cm)	18.6	12.9	18.4	10.2	18.0	
Volume (cm ³)	16	10	20	4.1	14	
Fracture Type	Horizontal bedding plane	Horizontal bedding plane	Stylolitically controlled	Horizontal bedding plane	Stylolitically controlled	

Model	RN3	RN4	RN9	S 1	SRN31
Arithmetic Optical Mean Aperture (µm)	470	430	649	417	640
Standard Deviation	443	347	407	201	437
Coefficient of variation	0.94	0.81	0.63	0.48	0.68
Geometric Optical Mean Aperture (µm)	359	350	502	351	494
Hydraulic Mean Aperture (µm)	211	173	330	146	250
Mass Balance Mean Aperture (µm)	438	853	644	1168	1253

Table 2 – Statistical Falameters of Aperture Distribution of the Flacture Models	Table 2 – Statistical Parameters of Aperture Distribution of the Fracture	Models
---	---	--------

I able 3 – Geostatistical Analysis of Fracture Replicas						
Model	RN3	RN4	RN9	S1	SRN31	
Distribution	Lognormal	Lognormal	Lognormal	Normal	Normal	
Correlation Length (cm)	1.8	3.2	4.0	2.0	3.5	
Anisotropy Ratio	0.59	1.16	1.16	0.51	0.33	
Magnitude of difference between optical geometric b and $b_h (\mu m)$	148	177	172	205	244	
Magnitude of difference between optical arithmetic b and mass balance b_m (µm)	32	423	5	751	613	

Author	Rock Type	Mean Aperture	
Hakami and Barton (1990)	Leptite	$313 \ \mu m$ / water drop areas	
	Quartz monzonite	$402 \ \mu m$ / water drop areas	
		41 µm / water drop areas	
		$216 \ \mu m$ / water drop areas	
	Fine grained granite	84 μm / water drop areas	
		161 µm / water drop areas	
		$360 \ \mu m$ / measurement of	
Hakami and Larsson (1996)	Medium grained granite	fluorescent epoxy fill	
		$250 \ \mu m$ / hydraulic aperture	
Kumar et al. (1995)	Limestone	265 μm / NMRI <u>*</u>	Comment [MSOffice6]: please define NMRI here, or at the bottom
	Granite	192 μm / NMRI <u>*</u>	table
Lee et al. (2003)	Sandstone	$250 - 384 \ \mu m$ / optically	
Shapiro and Nicholas (1989)	Dolomite	$2,150-2,700 \ \mu m$ / field test	
Voss and Stockwell (1990)	Volcanic tuff	250 μm / optically	
* NMRI - nuclear magnetic re	esonance imaging		_

Table 4 – Some Measured Apertures of Single Fractures from the Literature

ere, or at the bottom of the

Figure 1: Mold Creation and Casting Process. See text for description of the process. Figure not to scale. 101x129mm (600 x 600 DPI)

Figure 2: Transmittance verses Wavelength for Experimental Setup 130x90mm (600 x 600 DPI)

Figure 3: Linear Calibration Curves for LIQUITINT Blue Dye at three different concentrations 130x89mm (600 x 600 DPI)

ScholarOne support: (434)817.2040 ext. 167

Figure 4: Optically Determined Aperture Distribution for Model RN3. Direction of flow indicated by arrow. 181x100mm (300 x 300 DPI)

ScholarOne support: (434)817.2040 ext. 167

Figure 5: Bromide Breakthrough Curves shown in Normalized Concentration (Effluent Concentration divided by Initial Concentration) 130x98mm (600 x 600 DPI)

Figure 6: Optically Determined Aperture Distribution for Model RN4. Direction of flow indicated by arrow. 174x110mm (300 x 300 DPI)

Figure 7: Optically Determined Aperture Distribution for Replica S1. Direction of flow indicated by arrow. 179x106mm (300 × 300 DPI)

141x111mm (300 x 300 DPI)