
INTRODUCTION
Extraction of granite from lower crust, and its

emplacement at shallower levels, is the principal
mechanism by which the continents have be-
come differentiated. Thus, understanding how
granite moves through the crust is an important
step toward understanding crustal evolution. In
many convergent orogenic belts spatial and tem-
poral relationships between granite and regional
tectonic structures suggest ascent and emplace-
ment during contraction rather than during exten-
sion (e.g., Hutton, 1997; Brown and Solar, 1998a).
During orogenesis, melting occurs in a dynamic
environment in which differential stresses acting
upon anisotropic crust lead to heterogeneous
deformation at all scales, which enables granite
extraction, ascent, and emplacement (e.g., Brown,
1994; Sawyer, 1994). Deformation leads to peri-
odically connected melt flow networks (e.g.,
Brown and Rushmer, 1997; Brown and Solar,
1998b) and crustal-scale architectures, such as
shear-zone systems (e.g., D’Lemos et al., 1992;
Brown and Solar, 1998a), that allow melt extrac-
tion and focus melt ascent through the crust.
Regional tectonic structures are thought to play
an important role during emplacement of some
granite plutons, either by creating space (e.g.,
Hutton, 1988) or by arresting ascent (e.g.,
Clemens and Mawer, 1992).

It is implicit in these relationships and inter-
pretations that crustal anatexis and granite
extraction, ascent, and emplacement are syntec-
tonic processes, and that deformation and melt
transfer are synchronous. Synchroneity of meta-
morphism and migmatization, and granite melt
extraction, ascent, and emplacement can be
tested by precise determination of crystallization
ages, which is the purpose of this paper.

GEOLOGY OF WEST-CENTRAL MAINE
The northern Appalachians of New Hamp-

shire and Maine include Ordovician metasedi-
mentary and metavolcanic rocks, Neoproterozoic
basement rocks of the Bronson Hill belt, and
metasedimentary rocks of the Central Maine belt,
which range in age from Llandovery to Emsian
(e.g., Moench and Pankiwskyj, 1988; Fig. 1a).
The Central Maine belt contains structures
believed to have formed primarily during Devo-
nian dextral-transpressive deformation (Brown
and Solar, 1998a).

In the Central Maine belt of west-central
Maine, zones of enhanced deformation are sug-
gested by a high degree of parallelism between
compositional layering and foliation, which main-
tain a consistent northeast strike and steep south-
east dip across the width of the zones, and a
well-developed moderately to steeply northeast-
plunging mineral elongation lineation (Brown
and Solar, 1998a). These steep zones surround
zones (Figs.1b and 1c) in which foliation is nei-
ther as strongly developed nor generally parallel
to variably oriented, moderately dipping compo-
sitional layering, although a well-developed
moderately to steeply northeast-plunging min-
eral elongation lineation is pervasive. We inter-
pret these intervening zones to record relatively
lower strain (LSZs) within anastomosing zones
of higher strain (HSZs) (Solar and Brown,
1998); these are part of the Central Maine belt
shear-zone system. In HSZ rocks, a noncoaxial
component of deformation is suggested by
asymmetric pressure shadow tails around
porphyroblasts, by biotite “fish,” and by a con-
sistent obliquity between boudinaged granite-
pegmatite sheets and layering and/or foliation,
and it is required to prevent space incompatibil-

ities between the structural zones. The kinemat-
ics suggests the Central Maine belt shear-zone
system accommodated dextral-reverse displace-
ment during transpressive orogenesis (Brown
and Solar, 1998a). Also, porphyroblasts of bio-
tite, garnet, andalusite, and staurolite contain an
included foliation inclined to surrounding matrix
foliation, consistent with coeval metamorphism
and plastic deformation (Solar and Brown,
1998). Smith and Barreiro (1990) determined
the age of this syntectonic regional metamor-
phism as 405–399 ± 2 Ma, using the U-Pb
method on monazite crystallized at staurolite-
grade conditions in schists unaffected by later
contact metamorphism.

At high metamorphic grade, partial melting
formed migmatites within the Tumbledown and
Weld anatectic domains (Fig. 1b) (Brown and
Solar, 1998a). Stromatic (layered) migmatites
contain a lower fraction of leucosome in com-
parison to foliated inhomogeneous migmatites.
Inhomogeneous migmatites vary from mica-rich
residual varieties to leucosome-rich schlieric
granite, which suggests progressive segregation
of melt from residue by granular-flow–induced
compaction. The boundaries between these two
migmatite types are approximately coincident
with boundaries between structural zones
(Fig. 1b); stromatic migmatites are in the HSZs
whereas inhomogeneous migmatites are in the
LSZs. Sheets of granite that are concordant or
weakly discordant with respect to foliation in
HSZs (Fig. 2) are interpreted to record chan-
neled transfer of melt, and by analogy with
veins at a lower metamorphic grade, may be in
tensile and dilational shear fractures (Brown
and Solar, 1998b).

The Granites
The dextral-reverse kinematics of the Central

Maine belt shear-zone system implies that suc-
cessively shallower structural levels are exposed
to the northwest across the study area in west-
central Maine (Fig. 1b). Thus, within the block to
the southeast of the central HSZ, the Phillips
pluton and the associated Weld anatectic domain
represent the deepest structural level, while the
Redington pluton and the northern lobe of the
Lexington pluton in the block to the northwest of
the central HSZ represent shallower levels.

The three-dimensional shape of plutons can be
deduced by combining geologic information
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with models based on geophysical data, gravity
studies in particular. Here, we summarize pluton
geometries derived by Brown and Solar (1998b)
using map information, thermal aureole width
and depth of pluton emplacement, cross sections
of plutons modeled in a regional gravity study
(Carnese, 1981), and a crustal model based on an
integrated geophysical study (Stewart, 1989).

The Phillips pluton is a hemiellipsoidal body in
an LSZ (Fig. 1b). Where observed, principal con-
tacts between granites and metasediments are

concordant with respect to regional structure.
Steeply dipping magmatic fabrics (biotite-rich
schlieren, and modal and grain-size layering)
occur locally and are oriented conformably with
the northeast-striking, subvertical foliation in sur-
rounding metasedimentary units (Pressley and
Brown, 1998). Although the Weld anatectic
domain to the south is poorly exposed, available
outcrop data suggest it is composed of inhomoge-
neous migmatite with lenses of schlieric granite
(Brown and Solar, 1998b). Given the northeast-

plunging mineral elongation lineation in the
Central Maine belt rocks, it is implicit that rocks
similar to those exposed in the Weld anatectic
domain occur under the Phillips pluton to the
northeast (Fig. 1b). The Redington pluton has ir-
regularly northeast-dipping contacts with wall
rocks in the northeast and inward-dipping con-
tacts in the southwest, where it is inferred to be in
contact with wall rocks along a northeast-dipping
surface that represents the base of the pluton. In
the southwest, aligned K-feldspar phenocrysts in
granite define a moderately northeast-dipping
magmatic foliation, subparallel to kilometer-scale
screens of weakly strained hornfelsic wall rock.
The pluton is in an LSZ (Fig. 1b). Gravity model-
ing suggests a horizontal wedge as much as
2.5–3 km thick at the northeast margin thinning to
the southwest (Carnese, 1981). In contrast, the
Lexington pluton has a hybrid geometry in which
a hemiellipsoidal northern lobe is in an LSZ, but
the central-southern lobe has a tabular form that
thins to the south-southeast, cutting discordantly
across the shear-zone system (Fig. 1b). Modeling
by Unger et al. (1989) suggests the northern lobe
is ≈12 km thick, with steep inward dipping con-
tacts, in comparison with the central-southern
lobe, which thins from ≈6 to ≈3 km across the
strike of the central HSZ. Sporadic outcrops in the
center of the pluton exhibit northeast-striking,
steeply southeast-dipping magmatic foliation.
The eastern part of the Mooselookmeguntic
pluton is exposed in the west of the area (Fig. 1b).
This is a large tabular pluton, shallowly northeast
dipping and thinning to the southwest, that also
cuts the shear-zone system.
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Figure 1. a. Location of Central Maine belt (CMB) of New Hampshire and Maine in relation to
Bronson Hill belt (BHB) to northwest, and Norumbega shear-zone (NSZ) system and Avalon
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crosses. c. Simplified structure section, northwest-southeast, with Redington and Phillips
plutons omitted.

Figure 2. Steeply east-dipping granite sheets
in stromatic migmatite within central high
strain zone along west side of Tumbledown
anatectic domain, Swift River, Roxbury, Maine
(view to north).



The Model
On the basis of field mapping and micro-

structural interpretations in west-central Maine
(Fig. 1), Brown and Solar (1998a, 1998b) have
proposed a model in which metamorphism,
migmatization, and granite melt transfer were
synchronous with deformation in a crustal-scale
shear-zone system. In nonmigmatitic rocks,
porphyroblast-matrix relations show metamor-
phic crystallization was syntectonic (Solar and
Brown, 1998). For anatectic rocks, at melt frac-
tions greater than threshold permeability during
active contractional deformation, end-member
rheological models are as follows: (1) percolative
melt flow parallel to the principal finite elongation
direction in the plane of flattening, recorded by
the mineral elongation lineation and the foliation,
and (2) en masse flow of melt with residue (e.g.,
by granular flow), in which differential flow rates
may enable melt and residue to segregate. Flow
may be channeled, as illustrated by centimeter-
scale stromatic (layered) migmatite structures and
meter-scale sheets of internally layered granite
arrested during ascent (Fig. 2). Embrittlement due
to a buildup of melt pressure may have enabled
tensile and dilatant shear fractures to form in stro-
matic migmatite, and granular flow may become
dilatant, leading to localization of deformation
that enables melt exfiltration (Brown and Solar,
1998a, 1998b). Cyclic fluctuations of melt pres-
sure result in pulsed flow of melt consistent with
internal layering in granite sheets. Granite ex-
hibits magmatic foliation but does not record
solid-state fabrics. This suggests late syntectonic
transfer of melt through the shear-zone system as
deformation waned, followed by crystallization
that proceeded without penetrative strain, al-
though smaller sheets exhibit crenulate margins,
and some sheets are deformed into pinch and
swell structures (Fig. 2).

Existing Age Data
Previous age determinations on granites in this

area include Rb/Sr whole-rock isochron ages of
371 ± 6 Ma (regressed from nine samples of the
Mooselookmeguntic pluton and satellite bodies,
and recalculated from data in Moench and
Zartman, 1976) and 399 ± 6 Ma (based on
samples from both the northern and central-
southern lobes of the Lexington pluton, H. E.
Gaudette, personal commun., cited in Dickerson
and Holdaway, 1989, p. 499). A U-Pb monazite
age of 363± 2 Ma from the southern part of the
Mooselookmeguntic pluton was reported by
Smith and Barreiro (1990). DeYoreo et al.
(1989) reported Late Devonian through Car-
boniferous 40Ar/ 39Ar ages from hornblende,
muscovite, and biotite mineral separates from the
Mooselookmeguntic and Phillips plutons.

RESULTS
Zircon selected for analysis was needle or

prism shaped (<75 µm size fraction), of high

optical quality, and free of optically visible
inclusions. We interpret these zircons to be
igneous (Pupin, 1980). On this basis, we expect
that the zircons may incorporate the least inher-
ited component, thus permitting the interpreta-
tion of ages as recording the time of crystalliza-
tion. Honey-yellow monazite selected for
analysis was round and ~50 µm in grain size.
Preparation, chemical purification, and analyti-
cal techniques follow the procedures developed
by Krogh (1973, 1982), with slight modification
(Tucker et al., 1990). In the conventional con-
cordia diagrams of Figure 3, individual zircon
fractions plot concordantly or with slight discor-

dance, suggesting modern-day Pb loss. All
monazite fractions plot concordantly. The data
are given in Table A,1 and ages, quoted at 95%
confidence limits, are summarized in Table 1.
The general consistency between zircon and
monazite ages and reproducibility of multiple
fractions from the same granite samples (Fig. 3)
suggest that the ages may be interpreted to
record the time of crystallization of the granites.
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1GSA Data Repository item 9872, Table A, Zircon
and Monazite Analyses, is available on request from
Documents Secretary, GSA, P.O. Box 9140, Boulder,
CO 80301. E-mail: editing@geosociety.org.



DISCUSSION AND CONCLUSIONS
In west-central Maine, granite sheets in the

central HSZ, schlieric granite in migmatites, and
granite plutons yield precise crystallization ages
in the range ca. 408–404 Ma, consistent within
error with the age of 405–399 ± 2 Ma for the
synkinematic metamorphism (Smith and Barreiro,
1990) and with the range for plutons farther
northeast along strike, 410–400 Ma (Hubacher
and Lux, 1987; Bradley et al., 1996). The appar-
ent contradiction between crystallization ages of
the granites and fossil ages of the youngest
metasedimentary rocks they intrude (Emsian) is
resolved by the new Devonian timescale of
Tucker et al. (1998), in which the base of the
Devonian is ca. 418 Ma and the base of the
Emsian is ca. 409.5 Ma. Thus, the new data
reported in this paper support a model of contem-
poraneous deformation, metamorphism, and
granite ascent through the crust (Brown and
Solar, 1998a, 1998b); viewed at the crustal scale
(Fig. 1b), granite extraction, ascent, and emplace-
ment were syntectonic.

Our data for the Mooselookmeguntic pluton
show that it is composite, having been con-
structed by at least two separate plutonic events.
The younger age of ca. 370 Ma for leucogranite
is consistent with U-Pb monazite ages reported
by Smith and Barreiro (1990) of 369–363 ±
2 Ma from metasedimentary rocks within the
contact aureole of this pluton and close to the
monazite age of 363 ± 2 Ma for a satellite body
of leucogranite. Southwest along strike, in New
Hampshire, the range of monazite ages reported
by Eusden and Barreiro (1988) from meta-
morphic rocks is ca. 402–376 Ma and from
small plutons and sheets of granite and pegma-
tite is ca. 401–359 Ma. These ages from the
Mooselookmeguntic pluton and farther south-
west suggest orogen-parallel diachroneity in
the age of tectonic events in the northern
Appalachians.
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